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Activation of Protein Kinase C Isoforms and Its Impact on
Diabetic Complications

Pedro Geraldes, George L. King

Abstract: Both cardio- and microvascular complications adversely affect the life quality of patients with diabetes and
have been the leading cause of mortality and morbidity in this population. Cardiovascular pathologies of diabetes have
an effect on microvenules, arteries, and myocardium. It is believed that hyperglycemia is one of the most important
metabolic factors in the development of both micro- and macrovascular complications in diabetic patients. Several
prominent hypotheses exist to explain the adverse effect of hyperglycemia. One of them is the chronic activation by
hyperglycemia of protein kinase (PK)C, a family of enzymes that are involved in controlling the function of other
proteins. PKC has been associated with vascular alterations such as increases in permeability, contractility,
extracellular matrix synthesis, cell growth and apoptosis, angiogenesis, leukocyte adhesion, and cytokine activation
and inhibition. These perturbations in vascular cell homeostasis caused by different PKC isoforms (PKC-�, -�1/2, and
PKC-�) are linked to the development of pathologies affecting large vessel (atherosclerosis, cardiomyopathy) and small
vessel (retinopathy, nephropathy and neuropathy) complications. Clinical trials using a PKC-� isoform inhibitor have
been conducted, with some positive results for diabetic nonproliferative retinopathy, nephropathy, and endothelial
dysfunction. This article reviews present understanding of how PKC isoforms cause vascular dysfunctions and
pathologies in diabetes. (Circ Res. 2010;106:1319-1331.)
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Diabetes currently affects nearly 170 million people
worldwide and this number will double by 2030, affect-

ing both developed and developing countries.1 The major
cause complications in diabetic patients is complications,
which are the result of interactions among systemic metabolic
abnormalities such as hyperglycemia, dyslipidemia, genetic
and epigenetic modulators and local tissue responses to toxic

metabolites. Complications involve large vessel obstructions,
such as coronary artery diseases, atherosclerosis, and periph-
eral vascular diseases, and microvascular pathologies, includ-
ing retinopathy, nephropathy, and neuropathy. Hyperglyce-
mia is one of the major systemic risk factors for diabetic
complications. The Diabetes Control and Complications Trial
(DCCT) in type 1 diabetes2 and the United Kingdom Pro-
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spective Diabetes Study in type 2 diabetes3 demonstrated that
intensive blood glucose control delays the onset and retards
the progression of diabetic microvascular complications. In
contrast, reducing cardiovascular pathologies in type 2 dia-
betes requires the control of multiple metabolic factors,
including hyperglycemia, free fatty acids, lipids, insulin
resistance, and others. Hyperglycemia alone may not be
sufficient to trigger diabetic alterations because only 30% to
40% of type 1 diabetic patients will ultimately develop
chronic renal failure, suggesting that genetic and protective
tissue factors may also play an important role.4 For example,
the 50-Year Medalist Study at Joslin Diabetes Center, which
recognizes patients who survive more than 50 years with type
1 diabetes, showed that significant numbers of diabetic
patients live without severe complications regardless of their
HBA1c levels and other classical markers thought to be
predictive for diabetic vascular complications.4 These data
suggest that some patients possess genetic factors that can
neutralize the adverse effects of hyperglycemia.

Multiple biochemical pathways have been proposed to link
the adverse effects of hyperglycemia with vascular compli-
cations. Cellular mechanisms include increased activation of
the polyol pathway,5 nonenzymatic glycation, and AGEs
(advanced glycation end products) pathway,6 enhanced reac-
tive oxygen production and actions,7 and activation of the
diacylglycerol (DAG)–protein kinase (PK)C pathway.8 It is
likely that hyperglycemia-induced intra- and extracellular
changes lead to alterations of signal transduction pathways,
affecting gene expression and protein function to cause
cellular dysfunction and damage. The DAG-PKC pathway is
one of the most studied pathways in cellular signaling
induced by diabetes.9 In this review, we focus on the role of

PKC actions and related signaling changes in the develop-
ment of diabetic vascular complications.

Activation of DAG-PKC Pathway in Diabetes
DAG levels are elevated chronically in the hyperglycemic or
diabetic environment because of an increase in the glycolytic
intermediate dihydroxyacetone phosphate. This intermediate
is reduced to glycerol-3-phosphate, which subsequently in-
creases de novo synthesis of DAG.10 In diabetes, total DAG
levels are elevated in vascular tissues, such as the retina,11

aorta, heart,12 and renal glomeruli,13,14 and in nonvascular
tissues, such as liver and skeletal muscles.15 However, there
is no consistent change in DAG levels in the central nervous
system and peripheral nerves.16 Various cell culture studies
have shown that DAG levels increase in a time-dependent
manner as glucose levels elevate from 5.5 to 22 mmol/L in
aortic endothelial cells,12 retinal pericytes,17 smooth muscle
cells10 and renal mesangial cells.18

PKC, a group of enzyme members of the AGC (cAMP-
dependent protein kinase/PKG/PKC) family, is a serine/
threonine-related protein kinase that plays a key role in many
cellular functions and affects many signal transduction path-
ways.19 There are multiple isoforms of PKC that function in
a wide variety of biological systems.20 The conventional PKC
(cPKC) isoforms (PKC-�, -�1, -�2, and -�) are activated by
phosphatidylserine, calcium, and DAG or phorbol esters such
as phorbol 12-myristate 13-acetate (PMA), whereas novel
PKCs (nPKCs) (PKC-�, -�, -�, and -�) are activated by
phosphatidylserine, DAG or PMA, but not by calcium. The
atypical PKCs (aPKCs) (PKC-� and -	/
) are not activated by
calcium, DAG or PMA (Figure 1). Extensive and excellent
reviews concerning PKC structural basic activation have been
published.19–22 Given the present breadth of knowledge in
this area, we focus our attention on how hyperglycemia
modulates PKC activation. PKCs can also be activated by
oxidants such as H2O2 in a manner unrelated to lipid second
messengers23 and by mitochondrial superoxide induced by
elevated glucose levels.24 Many abnormal vascular and cel-
lular processes and deregulations, including endothelial dys-
function, vascular permeability, angiogenesis, cell growth
and apoptosis, changes in vessel dilation, basement mem-
brane thickening, and extracellular matrix (ECM) expansion;
enzymatic activity alterations, such as in mitogen-activated
protein kinase (MAPK), cytosolic phospholipase A2, Na�–
K�–ATPase; and alterations in several transcription factors
(Figure 2) are attributed to multiple PKC isoforms that are
changed by diabetes (Table 1). These PKC-induced vascular
and tissue pathologies are discussed in detail in the following
paragraphs.

PKC Activation: Cell Culture Studies
Endothelial Cells
Endothelial cells (ECs) regulate both vasodilator and vaso-
constrictor substances mediating coagulation, platelet adhe-
sion and immune function and control volume and electrolyte
content of the intravascular and extravascular spaces. Tight
junctions between ECs form a vascular barrier, which in the
diabetic state becomes more vulnerable and permeable as a

Non-standard Abbreviations and Acronyms

ACE angiotensin-converting enzyme

AGE advanced glycation end product

CTGF connective tissue growth factor

DAG diacylglycerol

EC endothelial cell

eNOS endothelial nitric oxide synthase

ERK extracellular signal-regulated kinase

ET-1 endothelin-1

MAPK mitogen-activated protein kinase

MI myocardial infarction

NTSS-6 neuropathy total symptoms score-6

PDGF platelet-derived growth factor

PI3K phosphoinositide 3-kinase

PKC protein kinase C

PMA phorbol 12-myristate 13-acetate

RBF retinal blood flow

RBX ruboxistaurin

SMC smooth muscle cells

TGF transforming growth factor

VEGF vascular endothelial growth factor
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result of EC abnormalities. PKC activation directly increases
the permeability of albumin and other macromolecules
through barriers formed by ECs.25,26 Moreover, Inoguchi et al
reported that hyperglycemia or PMA inhibits gap junction
intercellular communication in bovine aortic ECs. Staurospo-
rine, a serine/threonine kinase inhibitor, prevented these
effects of high glucose.27 High glucose exposure induced
translocation of PKC-�, -�1, -�2, and PKC-� but not PKC-�
or PKC-� in retinal ECs.28 A previous study showed that
overexpression of PKC-�1 in human dermal microvascular
ECs enhances phorbol ester–induced increased permeability
to albumin.29 Hempel et al also showed that PMA increases
permeability via translocation of PKC-� similar to that
caused by high glucose levels. This permeability is prevented
by staurosporine.30 PKC activation also results in endotheli-
um-dependent vasodilator dysfunction by altering the bio-
availability of nitric oxide (NO), affecting vascular endothe-
lial growth factor (VEGF) expression and actions and
decreasing production of prostacyclin, as well as increasing
the production of thromboxane, other cyclooxygenase-
dependent vasoconstrictors and endothelin (ET)-1 (Figure

3).31–33 A previous study demonstrated that endothelial nitric
oxide synthase (eNOS) expression is decreased in aortic ECs
cultured in high glucose concentrations, resulting in a reduc-
tion of NO.34 Treatment with calphostin C, an inhibitor of c-
and nPKC (novel PKC), prevented high glucose levels from
reducing NO production.33 Another potential pathway by
which high concentrations of glucose reduce NO bioavail-
ability is by increasing superoxide production from NADPH
oxidase in aortic ECs.35 The induction of several subunits of
NADPH oxidase by constant or intermittent high glucose
concentrations is decreased with treatment of a PKC-�
inhibitor (LY379196).36 PKC activation also modulates vas-
cular endothelial permeability and neovascularization via the
expression of growth factors, such as VEGF/vascular perme-
ability factor. One study showed that both VEGF/vascular
permeability factor mitogenic and permeability actions are, in
part, the result of the membrane expression of PKC-� and -�
through tyrosine phosphorylation of phospholipase-C�,
which is reduced by a PKC-� inhibitor, LY333531.37 More-
over, PKC-� is required for VEGF-induced retinal EC
permeability by altering occluding phosphorylation.38 One

Figure 1. Schematic representation of
the domain structure of PKC isoforms.
Adapted from Newton19,20 and
Steinberg.19,20

Figure 2. Schematic representation of biological
targets of PKC isoform activation and synthesis.
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possible mechanism for vasoconstriction in retinal ECs
caused by PKC action is probably increased expression of
ET-1, a potent vasoconstrictor. Indeed, studies reported that
ET-1 mRNA expression elevates in cultured retinal ECs
exposed to high glucose levels.28

Smooth Muscle Cells
Vascular smooth muscle cells (SMCs) are involved in regu-
lation of vascular tone and could be an important target for
injurious effects of hyperglycemia. An emerging body of
evidence suggests that hyperglycemia-induced SMC patho-
genesis, similar to EC pathogenesis, results from an imbal-
ance between cell growth and cell death. In the presence of
high glucose levels, SMCs have elevated DNA synthesis and
contraction by PMA stimulation.39–41 Another group reported
that high glucose levels reduce SMC apoptosis, which is
blocked by PKC inhibitor (calphostin C).42 Moreover, rat
SMCs exposed to high glucose concentrations exhibited
increases membrane fraction expression of cPKC-� (conven-
tional PKC-�) and nPKC-� (novel PKC-�) p38 MAPK
phosphorylation and arachidonic acid release (Figure 3).41

Monocytes: Macrophages
Monocyte activation and transformation into macrophages
are key steps in the atherosclerotic and inflammatory process.
One of the earliest events in the pathogenesis of atheroscle-
rosis is lipid accumulation in the arterial wall and formation
of foam cells through uptake of modified or oxidized low-
density lipoprotein by monocyte-derived macrophages.43 Lit-
tle is known about how hyperglycemia or diabetes affects
PKC activity in circulating monocytes. However, activation
of PKC in monocytes may participate in their initial adhesion
to the vasculature and differentiation into macrophages.
Hyperglycemia regulates the LOX-1 (leptin-like oxidized

low-density lipoprotein receptor-1) and enhanced membrane
PKC-�2 expression in human monocyte-derived macro-
phages.44 These effects of high glucose levels in LOX-1
expression are prevented by treatment with calphostin C or
PKC-� inhibitor (LY379196). Ceolotto et al reported that
monocytes isolated from diabetic patients showed higher
membrane PKC activity compared to those from control
subjects.45 This study also demonstrated that membrane
PKC-� activity, but not -�, isoform, is increased in diabetic
monocytes.45 Furthermore, Osto et al reported that inhibition
of PKC-� reduced low-density lipoprotein uptake by macro-
phages.46 This study also showed that treatment with
LY333531 significantly attenuates macrophage activation by
reducing intercellular adhesion molecules-1 and monocyte
chemotactic protein-1 protein expression.47 A recent study
from Dasu et al reported that elevation of glucose levels in the
media increases the expression of toll-like receptors 2/4 in the
human acute monocytic leukemia cell line, whereas inhibition
of PKC-� and PKC-� prevents this effect.48 Overall, these
data suggest that PKC signaling could be in part responsible
for macrophage activation/attachment and foam cell forma-
tion induced in the hyperglycemic state (Figure 3).

Mesangial Cells
The hallmark of diabetic kidney disease is the thickening of
glomerular basement membrane and accumulation of ECM in
glomerular mesangium and tubulointerstitium.49 Histological
analysis showed increases in type IV and VI collagen,
fibronectin, and laminin and decreases in proteoglycans in the
mesangium of diabetic patients with nephropathy, and prob-
ably in the vascular endothelium in general.50 In vitro
experiments reported that hyperglycemia or PMA increases
type IV collagen and fibronectin expression in mesangial
cells, which is prevented by calphostin C.51,52 Kapor-Drezgic
et al reported that total PKC activity measured by in situ
32P-phosphorylation of epidermal growth factor substrate is
increased by hyperglycemia in rat mesangial cells.53 Length
of exposure to high glucose also influences PKC isoform
translocation in these cells.54 Previous studies reported that

Figure 3. Schematic representation of hyperglycemia-induced
PKC activation affecting multiple cellular functions.

Table 1. PKC Isoforms Detected in Vascular Tissues and Cell
Types by Immunoblot Under Normal Conditions or Following
Exposure to Hyperglycemia or Diabetic State

Tissue and Cultured Cell
Type

PKC Isoforms
Detected

PKC Isoforms Activated
(Translocation and/or

Abundance) by
Hyperglycemia or

Diabetes

Mouse retina �, �1, �2, �, �, � �2, �

Rat retina �, �1, �2, � , � �, �1, �2, �, �

Bovine pericytes �, �1, �2, �, �, �, � �

Bovine endothelial cells �, �1, �2, �, �, �, � �, �2, �

Rat kidney �, �1, �2, �, �, � �, �

Rat glomeruli �, �1, �2, �, � �, �1, �2, �, �

Rat mesangial cell �, �, �, � �, �

Rat corpus cavernosum �, �1, �2, �, � �2

Rat sciatic nerve �, �1, �2, �, � � or no change

Rat aorta �, �2, �, � �2

Rat aortic smooth muscle
cells

�, �2, � �2, �

Rat heart �, �2, �, �, �, � �, �2, �, �

Rat cardiac myocytes �2, �, � �2, �
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exposure to high glucose levels or PMA stimulation increases
PKC-�, -�1, -�2, PKC-�, and -� membrane phosphorylated
fraction in mesangial cells.53–57 AGEs also play a significant
role in the pathogenesis of vascular and renal complications
associated with diabetes. Two groups indicated that AGEs
modulate, directly or indirectly via oxidative stress, particu-
late and membrane localization of PKC-� in mesangial
cells.58,59 In addition, the development of mesangial expan-
sion and basement membrane thickening in diabetes corre-
lates with increased expression of transforming growth factor
(TGF)-�. The implication of PKC causing elevated produc-
tion of ECM and TGF-� is further supported by several
reports showing that LY333531 prevents hyperglycemia-
increased ECM production and TGF-� expression in mesan-
gial cells.60 Another group demonstrated that high glucose
concentrations stimulate PKC-� activity, as measured by
immune complex kinase assay and immunofluorescence con-
focal microscopy. This activity is suppressed by a TGF-�
receptor inhibitor (LY364947).61

PKC Activation: Animal Model Studies
Atherosclerosis
Diabetes macrovasculopathy is associated with structural and
functional changes in large vessels that lead to blood flow
obstruction, hypertension, myocardial infarction (MI) and
possibly death. Atherosclerosis, characterized by endothelial
dysfunction, cytokine expression, monocyte infiltration, SMC
proliferation, impaired fibrinolysis combined with increased
thrombosis, and chronic inflammation, causes ischemic heart
diseases, MI, stroke, and peripheral arterial diseases.62–64

Hyperglycemia is believed to participate in atherosclerotic
plaque formation. Intensive therapy treatment (Diabetes Con-
trol and Complications Trial study) showed a significant
decrease in carotid artery intima/media thickness.65 However,
the disease state associated with insulin resistance can also
accelerate atherosclerosis which suggests that metabolic ab-
normalities associated with diabetes, and not hyperglycemia
per se, can increase the risk for macrovascular complications.
Nevertheless, activation of PKC isoforms, especially the �
isoform, has been the subject of recent investigation.
Schmidt, Yan, and colleagues recently published supportive
data on the potential role of PKC-� in atherosclerotic plaque
formation. Depletion of PKC-� gene or treatment with
LY333531 in apolipoprotein e–deficient mice decreased
atherosclerosis by inhibiting the Erg-1 (early growth
response-1) protein, which regulates vascular cell adhesion
molecule expression and matrix metalloproteinase-2 activity
preferentially in ECs.66 However, additional isoforms may be
involved in other steps of atherosclerosis. Novel PKC-�
participates in SMC apoptosis and deletion of this isoform,
leading to formation of arteriosclerosis.67 Therefore, whether
it will be beneficial to inhibit multiple PKC isoforms to halt
or prevent complex mechanisms related to atherosclerosis
remains to be resolved.

Cardiomyopathy
Myocardial pathologies in diabetic patients include diastolic
dysfunction, microvascular diseases, and interstitial fibrosis,
the last of which could be the result of active tissue remod-

eling contributing to reduction of cardiac contractility.68

Independent of the severity of coronary artery disease, hy-
pertension and other risk factors, diabetic patients have
elevated risk of congestive heart failure, inadequate collateral
vascular formation in response to ischemia69 and greater
likelihood of developing heart failure and reinfarction after
MI.70 Quantitative immunoblotting revealed a significant
increase in membrane fraction expression of PKC-�1 and -�2
in human failed hearts compared to nonfailed.71 This study
also showed that treatment with LY333531 decreases PKC
activation in human heart.71 Previously, animal studies re-
ported that PKC-�, -�1, and -�2 isoform mRNA and protein
expression in the membrane fraction are increased in the heart
and aorta in the hyperglycemic condition.12,72 Genetically
modified mice have been developed to better examine the
role of PKC in heart diseases. Transgenic mice overexpress-
ing PKC-�2 develop cardiomyopathy, supporting the role of
PKC-�2 in myocardial hypertrophy and fibrosis.73 Both
angiotensin-converting enzyme (ACE) and PKC-� inhibitors
ameliorate the metabolic gene profile and affect PKC activity
in diabetic hearts without altering circulating metabolites.74 In
cardiomyocytes, free fatty acids increased metabolic genes
such as PDK4 and UCP3 and mediated the inhibition of basal
and insulin-stimulated glucose oxidation, all of which are
prevented by treatment with LY333531. Furthermore, treat-
ment with islet cell transplantation, LY333531 and ACE
inhibitor (captopril) improved diastolic function, increased
glucose utilization by 36%74 and attenuated myocyte hyper-
trophy and collagen deposition75 in diabetic rat hearts. To-
gether, these results suggest that both ACE and PKC-�
inhibitors regulate fuel metabolic gene expression directly in
the myocardium and consequently improve cardiac function
and metabolism in diabetes. Other PKC isoforms may also
play a role in cardiomyopathy. A recent study reported that
PKC-�–deficient mice exhibit increased cardiac contractility
and are less susceptible to heart failure following long-term
pressure-overload stimulation.76

Connective tissue growth factor (CTGF) expression may
contribute to cardiac fibrosis. Interestingly, transgenic PKC-�2
mice showed increased CTGF expression in the myocardium,
suggesting that CTGF may act directly or indirectly with other
cytokines to induce cardiac fibrosis.73 By opposition, inhibition
of PKC-� exacerbated CTGF expression and potentially cardiac
fibrosis in the presence of angiotensin II.77 However, careful
attention should be given to PKC-� activation because this
isoform regulates proapoptotic signaling in cardiomyocytes dur-
ing myocardial ischemia/reperfusion injury.78 Furthermore,
cardiac-specific activation of PKC-� prevented diabetes-induced
pathogenetic changes in the heart, including ventricular func-
tion79 (Figure 4).

Among the processes induced by hyperglycemia, activa-
tion of PKC may contribute to cardiomyopathy by inhibiting
insulin’s metabolic actions, perhaps by phosphorylation of
serine/threonine residues on the insulin receptors or their
substrates.80 Cardiomyocytes isolated from nondiabetic ani-
mals and cultured in high glucose concentrations exhibited
impaired insulin-stimulated glucose uptake compared to
myocytes in normal glucose levels.81 Loss of insulin action in
myocardium is associated with lower basal expression of
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hypoxia-inducible factor-1�, which affects VEGF expression
in the myocardium.82 In contrast to nondiabetic patients,
insulin-resistant and diabetic patients showed a downregula-
tion of VEGF and its receptors.83 Moreover, several studies of
diabetic animals confirmed this finding, showing a reduction
of mRNA and protein expression of VEGF and its receptors,
cardiac VEGF signaling, and coronary capillary density in the
myocardium.84,85 Interestingly, another group reported that
diabetic patients with chronic coronary heart diseases show
an elevation of myocardial VEGF expression but a reduction
of its receptor expression and subsequently its downstream
signal transduction.86 Nevertheless, VEGF signaling impair-
ment results in decreased formation of collateral circulation,
which explains bigger infarct size and congestive heart failure
after MI in patients with diabetes.

Retinal Tissues
The pathogenesis of diabetic retinopathy is a complex process
involving multiple factors.87 The early stage of diabetic
retinopathy is characterized by loss of pericytes around
capillaries in the retina. Indeed, pericyte loss occurs before
clinically discernible retinopathy. This is followed by devel-
opment of weakness in the capillary wall, leading to capillary
aneurysm formation (microaneurysms) and fluid leakage
from capillaries as their walls become more permeable, with
increased adhesion of leukocytes and monocytes to the
endothelium.87 Hyperglycemia activates several PKC iso-
forms in retinal tissues, including PKC-�, -� -�, and -�.12,88

PKC activation causes retinal vascular dysfunction by alter-
ing enzyme activities in ECs (NO, ET-1, VEGF) and peri-

cytes (platelet-derived growth factor [PDGF], reactive oxy-
gen species, nuclear factor �B, and MAPK).89 In diabetic
animals, blood flow is decreased in the retina but elevated in
glomeruli.90–92 In streptozotocin-induced diabetic rats, treat-
ment with LY333531 (0.1 to 10 mg/kg) improved retinal
hemodynamic abnormalities.13 Interestingly, systemic oral
administration for 2 weeks of LY333531 to diabetic rats from
the onset of the disease normalized the retinal blood flow
(RBF)13 and prevented the induction of ET-1 mRNA expres-
sion.93 Furthermore, local intravitreous injection of
LY333531 (5 nmol/L) reduced retinal PKC activation and
retinal circulation time and restored RBF in diabetic rats.94

Alterations in NO production and eNOS expression directly
influence vascular hemodynamics such as contraction and
relaxation, which may affect RBF. In vessels isolated from
diabetic patients and animals, acetylcholine stimulation,
which induces vessel relaxation, appears to be delayed.95,96

PKC agonist PMA provokes vascular relaxation impairment
in normal arteries.97

How diabetes regulates and increases proapoptotic factors
has been researched for many years. However, the impact of
hyperglycemia on reducing survival factors has been much
less studied. We recently reported that both PKC-� and
PKC-� translocate to the membrane fraction in total retinal
lysates of diabetic mice, but the consequences of these 2 PKC
isoform activations were very different: PKC-� induced
cellular apoptosis,17 whereas PKC-� enhanced cellular
growth.98 Accordingly, an increase in membrane PKC-�
levels for several months of diabetes correlated with the
appearance of retinal pericyte apoptosis in vitro and acellular
capillaries in vivo. In vivo studies showed that induction of
retinal PKC-� of diabetic mice leads to PDGF resistance,
which is not observed in Prkcd�/� mice. Furthermore,
specific inhibition of PKC-� in pericytes in vitro or disruption
of Prkcd�/� mice prevented NF-�B activation and restored
signal transduction of PDGF. Our study found that hypergly-
cemia through PKC-� actions promotes 2 distinct and equally
important pathways by (1) increasing reactive oxygen species
production and NF-�B activity and (2) decreasing the impor-
tant survival signaling pathway of PDGF by upregulating the
expression of a protein tyrosine phosphatase, SHP-1. These
findings identify a pivotal role for PKC-� in causing retinal
cell apoptosis and the formation of acellular capillaries
(Figure 5).17

Renal Tissues
Many studies have correlated changes in hyperglycemia with
severity and progression of nephropathy affecting both the
glomeruli and renal proximal tubules.2,3,99,100 The specific
effects of PKC isoforms on diabetic complications in the
kidneys are just beginning to be determined using pharma-
cological approaches and genetically altered mice. Menne et
al reported that diabetic Prkca�/� mice are resistant to the
development of albuminuria and glomerular hyperfiltration
stimulated by VEGF.101 The translocation of PKC-� to renal
cortical membranes by diabetes is associated with NADPH-
dependent superoxide production and elevated renal serum
and urinary VEGF.102 Furthermore, previous animal studies
reported that deletion of the PKC-� gene or treatment with

Figure 4. Schematic representation of various biological targets
of PKC activation leading to selective insulin resistance and dia-
betic cardiomyopathy.
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LY333531 protects against diabetes by causing increases in
renal hypertrophy, glomerular hyperfiltration, ECM produc-
tion, expression of CTGF, and production of TGF-�1 and
reactive oxygen species (Figure 6).13,60,103–105 Even in nondi-
abetic kidney disease, LY333531 treatment attenuated the
impairment in glomerular filtration rate and reduced the
extent of both glomerulosclerosis and tubulointerstitial fibro-
sis in subtotally nephrectomized rats.106 Interestingly, analy-
sis of the renal phenotype in Prkce�/� mice showed elevated
albuminuria at 6 and 16 weeks of age, with increased
tubulointerstitial fibrosis and mesangial cell expansion.107

These data suggest that not all PKC isoforms have adverse
effects on kidney pathologies.

Neuronal Tissues
The contribution of PKC activation to diabetic neuropathy
still requires clarification. PKC contributes to diabetic neu-
ropathy by a neurovascular mechanism such as blood flow
and conduction velocity. Immunochemical analysis demon-
strated the presence of PKC-�, -�1, -�2, -�, PKC-�, and -�
isoforms in nerve.108,109 A previous report demonstrated a
reduction of PKC activity by direct measurement of sciatic
nerve tissues in streptozotocin diabetic rats.110 These results
contrast with more recent studies showing that treatment with
nonselective PKC isoform inhibitor as well as selective
PKC-� inhibitor improve neural function in diabetic ani-
mals.111,112 Initial evidence suggested that PKC is involved in
the mechanism leading to reduced Na�–K�–ATPase activity,
resulting in decreased nerve conduction and nerve regenera-
tion.113 Membrane-associated PKC activity was reduced in
diabetic mice treated with nonselective PKC inhibitors that
restored or maintained Na�–K�–ATPase activity.111,114 Fur-
thermore, previous studies examined the effect of diabetes in
rat sciatic nerve and demonstrated that LY333531 treatment
prevents the development of diabetic nerve dysfunction.115

Indeed, Cameron et al showed that treatment with LY333531
at low dose improves motor nerve conduction velocity,

normalizes nerve blood flow and restores Na�–K�–ATPase
activity in diabetic rats.116 However, in this study, diabetes
did not affect nerve PKC activity or DAG levels. Overall,
these studies suggest that PKC inhibition on nerve conduction
improves nerve blood flow rather than nerve Na�–K�–
ATPase activity.

Insulin Resistance
Although the principal function of insulin is to regulate and
maintain glycemic control, this hormone has many vasotropic
actions. Insulin normally stimulates vasorelaxation through a
direct effect on blood vessels mediated by endothelium-
derived NO.117 Insulin also promotes endothelial NO produc-
tion by rapid posttranslational mechanisms,118 as well as
eNOS gene expression.119 Therefore, insulin resistance, dia-
betes or reduction of insulin-stimulated regulation of endo-
thelium-derived NO may be an important factor for vascular
homeostasis.120 Insulin signaling in vasculature of obese
Zucker rats showed inhibition of the phosphoinositide
3-kinases (PI3Ks) pathway but no change in the extracellular
signal-regulated kinases (ERK)1/2 cascade, suggesting a
selective insulin resistance phenomenon.121 This observation
was subsequently reported in skeletal muscle from obese
people and patients with type 2 diabetes122 and in the
myocardium of obese Zucker rats.123 Vasculature of obese
Zucker rats also exhibited elevated PKC activity124 and
reduced insulin-stimulated insulin receptor substrate tyrosine
phosphorylation.121 The question of which PKC isoform’s
elevation is involved in this process has generated much
interest. Treatment with LY333531 normalized the reduction
of insulin-stimulated NO production in the aorta of obese
Zucker rats.124 Transgenic mice overexpressing PKC-�2
exhibited decrease Akt activation in vascular cells after
insulin stimulation.124 Although strong evidence corroborates
PKC-induced insulin signaling inhibition, the complex mech-
anisms involved are not fully understood. PKC activation
prevents PI3K pathway at the insulin receptor substrate level,
which affects several signaling molecules related to this
pathway (see elegant review by Sampson and Cooper).125

Figure 6. Schematic representation of various biological targets
of PKC activation leading to diabetic nephropathy.

Figure 5. Schematic representation of potential biological tar-
gets of PKC activation causing diabetic retinopathy.
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Insulin actions mediating the ERK1/2 pathway are accentu-
ated by PKC actions.126 Thus, selective insulin resistance,
caused by PKC activation, enhances insulin’s proatheroscle-
rotic mechanisms via ERK1/2 signaling or inhibits its anti-
atherosclerotic mechanisms by inhibiting the PI3K/Akt
pathway.127

PKC Inhibitors and Human Clinical Trials
General PKC isoform inhibitors exist. However, these non–
isoform-specific inhibitors interact with other ATP binding
kinases and therefore display toxic and severe side effects in
vivo. Suitable specific PKC isoform inhibitors for therapeutic
or clinical studies should target the phospholipid or phorbol
ester binding site of the PKC structure, called regulatory
domain, or bind to the substrate or ATP binding site of the
catalytic domain. For example, indolcarbazole or bisindolyl-
maleimide are selective inhibitors that target the ATP-binding
site of catalytic domain. The PKC-� inhibitor ruboxistaurin
(RBX) (also known as LY333531 or Arxxant, Eli Lilly,
Indianapolis, Ind) is a class of bisindolylmaleimide.13,104

Rottlerin (mallotoxin), a natural product derived from Mal-
lotus philippensis, has higher affinity for PKC-� (IC50, 3 to
6 mol/L) but also inhibits other isoforms of PKC (IC50,
�30 mol/L)128 and other non-PKC kinases, such as MAPK,
PKA, and glycogen synthase kinase-3.129 In contrast, RBX
shows selective inhibition for PKC-�1 and PKC-�2 with IC50

values at 4.5 and 5.9 nmol/L, respectively.130

RBX is the most studied PKC inhibitor in cellular, animal
and especially human studies (Table 2). Phase I studies using
RBX included patients who had diabetes for less than 10
years and no evidence of clinical retinopathy. This study
determined the dose needed to normalize RBF, an early
marker of diabetic retinopathy.131 The dose–response curve
showed that a minimum dosage of 32 mg/d orally is required
to prevent decreases in RBF in diabetic patients.131 Low
doses did not completely normalize RBF. Few side effects
were found during clinical trials that lasted up to 4 years.132

Phase II and phase III clinical trials were conducted in late
stages of nonproliferative diabetic retinopathy, with the loss
of visual acuity as the primary end point. The first 2 clinical

trials, PKC-Diabetic Retinopathy Study (PKC-DRS) and
PKC-Diabetic Macular Edema Study (PKC-DMES),133,134

failed to reach primary outcomes because of multiple factors
(unpowered, 3 treatment arms of differing dosages, high
dropout rate of patients). However, there was a significant
reduction in the secondary end point of the progression of
diabetic macular edema to a certain stage. A much larger
clinical trial, PKC-DRS2, was undertaken using a single oral
dose (32 mg versus placebo), with the primary end point of
visual acuity rather that diabetic retinopathy progression.135

The results showed that RBX significantly prevents reduction
of visual acuity in diabetic patients with moderate visual loss
and decreases the onset of diabetic macular edema.133 These
clinical results suggest that PKC activation, especially of the
� isoform, participates in the development of diabetic reti-
nopathy. However, because treatment with RBX preserves
visual acuity by decreasing capillary permeability or targeting
the neural retina but cannot significantly delay the progres-
sion of diabetic retinopathy, these data suggest that inhibition
of the PKC-� isoform alone is not enough to stop the early
metabolic changes that are likely driving the progression of
preproliferative diabetic retinopathy.

The role of PKC-� was also evaluated in patients with
diabetic nephropathy. In kidney biopsies of diabetic patients,
quantitative real-time PCR analysis showed a 9.9-fold in-
crease in PKC-� mRNA expression as compared to control
subjects.136 A phase II clinical trial was conducted using RBX
(32 mg/d) to determine whether PKC-� inhibition can be
effective in type 1 and 2 diabetic patients with high protein-
uria (�300 mg/d) treated with ACE inhibitors or angioten-
sin-receptor blockers. Results suggested that 1 year of treat-
ment with RBX in addition to angiotensin II inhibitors or
receptor blockers decreases the loss of glomerular filtration
rate and proteinuria in diabetic patients.137 However, more
data and phase III clinical trials are needed to confirm the role
of PKC and its subsequent signaling pathways in diabetic
nephropathy, especially in very early histopathologic
manifestations.

Vinik et al conducted a 1-year trial of RBX treatment,
using a standardized clinical neurological examination to

Table 2. Clinical Trials Using a PKC Inhibitor

Clinical Trials Patients (N) Treatment Clinical Outcomes

Aiello et al (2006)131 29 RBX 4, 16, 32 mg/day (1 month, dose- dependent) Normalization of RBF at 32 mg/day

PKC-DRS (2005)133 252 RBX 8, 16, 32 mg/day (36–46 months) vs placebo Significantly delayed occurrence of moderate visual
impairment; no reduction in progression of
proliferative DR

PKC-DMES (2007)134 686 RBX 4, 16, 32 mg/day (minimum 30 months) vs placebo No significant effect of RBX to reduce progression
of diabetic macular edema

PKC-DRS2 (2006)135 685 RBX 32 mg/day (36 months) vs placebo 40% risk reduction in vision loss

Tuttle et al (2005)137 123 RBX 32 mg/day (12 months) vs placebo Decrease in urinary ACR

Vinik et al (2005)138 205 RBX 32, 64 mg/day (1, 3, 6, 12 months) vs placebo Improvement with RBX 64 mg/day in patients with
NTSS-6�6 at baseline

Beckman et al (2002)143 15 RBX 32 mg/day (7 days) vs placebo Significant inhibition of endothelium-dependent
vasodilatation after hyperglycemic clamp

Mehta et al (2009)144 108 RBX 32 mg/day (6–8 weeks) vs placebo Trend but not significant improvement in
flow-mediated dilatation

PKC-DMES indicates PKC-Diabetic Macular Edema Study; PKC-DRS, PKC-Diabetic Retinopathy Study.
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measure changes in neuropathy sensory symptoms by the
neuropathy total symptoms score-6 (NTSS-6) and quantita-
tive sensory testing by the vibration detection threshold.138

Patients with diabetic peripheral neuropathy taking placebo
versus either 32 or 64 mg of RBX were evaluated at baseline
and at 1, 3, 6, and 12 months in each group.138 RBX had no
significant effect on the overall patient population. However,
results showed a significant change in the NTSS-6 at 6
months and 12 months in patients who had clinically signif-
icant neuropathy sensory symptoms (NTSS-6�6) at baseline
when treated with RBX 64 mg compared with placebo. There
were no treatment-related differences in change from baseline
to end point for vibration detection threshold among all
symptomatic patients. However, in a subset of patients with
less severe symptomatic diabetic peripheral neuropathy, as
defined by a measurable sural nerve action potential, RBX
(32 mg and 64 mg) statistically improved vibration detection
threshold compared with placebo.138

Abnormal endothelial function has been demonstrated in
type 1 and type 2 diabetes, as well as in obese, insulin-resis-
tant patients whose insulin sensitivity correlated with the
magnitude of endothelium-dependent vasodilation.139 –141

Vascular permeability is increased as early as 4 to 6 weeks’
duration of diabetes in patients, supporting the concept of EC
dysfunction.142 A previous study also reported that infusion
of glucose for 6 hours decreases endothelium-dependent
vasodilation in nondiabetic and healthy people.143 In the
natural history of type 2 diabetes, the onset of hyperglycemia
precedes endothelial dysfunction,141 whereas onset of endo-
thelial dysfunction coincides with the presence of hypergly-
cemia in type 1 diabetes. Treatment with RBX (32 mg/d for
7 days) prevented endothelium-dependent vasodilatation ab-
normalities induced by hyperglycemia.143 Moreover, a recent
small, double-masked, placebo-controlled study in type 2
diabetes showed that RBX (32 mg/d) after 6 weeks improves
femoral-mediated dilatation at 1 and 5 minutes after cuff
deflation as compared to placebo.144 These data suggest that
PKC activation, especially the � isoform induced by hyper-
glycemia, may be responsible for the endothelial dysfunction
observed in diabetic patients. Clearly, further studies are
needed to determine whether RBX can effectively improve
endothelial function in type 1 and 2 diabetic patients.

Summary
In summary, many years of human and animal data confirm
the long-held belief that hyperglycemia perturbs arteries and
vascular cell function. The source of such complications in
diabetes is certainly multifactorial, with key roles identified
for oxidants and glycation metabolites. However, a large
body of literature supports hypothesis that hyperglycemia or
diabetes leads to vascular DAG accumulation and ensuing
PKC activation, causing a variety of cardiovascular defects.
Indeed, modulation of PKC signaling transduction pathways
affects the pathogenesis of various diabetic vascular compli-
cations. Activation of specific PKC isoforms by hyperglyce-
mia and lipid metabolites is likely to be responsible for
specific vascular pathologies such as EC and SMC dysfunc-
tion, ECM synthesis and fibrosis, monocyte activation, de-
regulation of cytokines, and vascular insulin dysfunction.

These intermediate cellular alterations contribute signifi-
cantly to the development of macrovascular complications
such as cardiomyopathy and acceleration of atherosclerosis,
and microvascular complications such as retinopathy and
nephropathy. Clinical trials have shown potential for PKC-�
inhibitor as a therapy for diabetic vascular complications.
However, not all clinical trials demonstrated positive effects
of PKC-� inhibition. For example, RBX trials did not exhibit
robust effects on the improvement of painful neuropathy or
sexual dysfunction in diabetic patients.145 Therefore, more
clinical trials targeting multiple PKC isoforms are urgently
needed to test the effectiveness in delaying, stopping and
even reversing diabetic vascular complications.
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